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Abstract
The paper proposes and describes a physical model of thermally induced
processes in binary lamellar systems. The model has been developed for
the theoretical explanation of an experimentally revealed fact of thermal
stabilization of intermetallic phases on the surface of a lamellar sample. Based
on the model we developed an algorithm for calculations and a computer code
that operates with three one-phase and two two-phase regions in the binary
alloy state diagram. The computational model includes as inputs changes in
concentration boundaries for existing phases with change in temperature, as
well as arbitrary temperature–time regimes for the thermal treatment of the
lamellar system under investigation. Good agreement between the theoretical
calculations and Mössbauer investigations of binary lamellar Fe–Be systems
has been achieved.

1. Introduction

The method of ion-plasma sputtering is widely used for direct modification of metal material
surface layers for improvement of the surface properties. Such lamellar materials could be
of practical interest only with the formation of thermally stable heterogeneous phase depth
distribution.

Based on the proposed thermodynamic approach, in order to achieve an equilibrium
spatial heterogeneous phase-structural state [1], experimental and theoretical studies of
thermally induced processes of diffusion and phase formation in lamellar metallic systems
were performed [2–8]. These investigations made it possible not just to reveal the sequence
and characteristic times of phase transformation in subsurface layers and in the bulk;
they showed that the direction of such transformation is determined by changes in local
component concentrations during their mutual diffusion. These investigations also made it
possible to obtain thermal stabilization of the spatially heterogeneous phase-structural state
distribution [4, 5].

A physical model [2–4] has been proposed for a quantitative description of thermally
induced diffusion and phase formation in the lamellar Fe–Be systems, based on Darken’s
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Figure 1. Schematic phase diagram of A–B alloy and possible distribution of α-phase particles over
sample depth at thermodynamic equilibrium.

phenomenology theory of mutual diffusion [9, 10] that describes experimental data for Be
average bulk concentrations below the solubility threshold for beryllium in α-Fe. However,
its framework does not allow an overall description of the observed process of thermal
stabilization, because the peculiarities of the diffusion process in two-phase regions of lamellar
systems are ignored.

In the present paper, we consider a physical model of thermally induced diffusion and
phase formation in binary lamellar metal systems. The model is based on proposed mechanism
of mutual diffusion in two-phase concentration regions and describes the process of thermal
stabilization of the inhomogeneous phase-structural state.

The main idea of the thermodynamic approach to obtaining the equilibrium spatially
heterogeneous phase-structural state [1] is in the determination of the composition and phase-
structural state of a sample that provides zero gradients of chemical potential for all the
components at a given temperature. Figure 1 presents a schematic equilibrium phase diagram
of a simple binary A–B alloy; solutions of both the component A in the component B (β-
phase) and B in A (α-phase) are possible. Consider the case when this alloy is heated to
temperature T , with chemical composition of the binary alloy corresponding to two equilibrium
phases (α + β). At that chemical composition of α-phase at equilibrium corresponds to the
intersection of the line T and the line α/(α + β) at concentration Cα and the composition
of the β-phase corresponds to the intersection of T with β/(α + β) at Cβ . Let us imagine
that we can spatially separate α- and β-phases with particles of one type at the surface and
the other type resting in the bulk. If surface effects are ignored, then we obtain at a given
temperature T a thermodynamically equilibrium spatially heterogeneous phase-structural state
when the α-phase is mainly located at the sample surface and the β-phase is mainly in the
volume, separated by an interfacing α + β two-phase region (see figure 1). This two-phase
region provides mechanical adhesion of the formed phases.

In reality nobody has succeeded in achieving such a system state just after ion-beam or
ion-plasma surface treatment. It is necessary to subject the system to thermal annealing which,
due to diffusion and phase formation, should lead to a thermally stable spatially heterogeneous
distribution of the phase-structure state.

2. Physical model and its software realization

When describing diffusion and phase formation processes in the binary lamellar metallic A–B
system we used a physical model based on the following statements.
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(1) The local concentration CA,B(x, t) (CA(x, t) + CB(x, t) = 1) of the components A and B
at the sample depth x is defined at any given moment of time t by the process of mutual
diffusion of the atoms.

(2) The partial diffusion coefficients DA,B of the components A and B in each other do not
depend on the phase-structural state of the sample.

(3) The rate of phase formation considerably increases the rate of diffusion.
(4) The result of phase formation is defined by the local concentration of the components and

the diagram of equilibrium states for a binary alloy:

• if the local concentration C(x, t) lies in the homogeneity region of one of the phases,
C(x, t) ∈ [Cmin, Cmax]α,β , then only this phase is formed;

• if the local concentration is in the two-phase region in the state diagram, C(x, t) ∈
[Cmin, Cmax]α+β , simultaneous formation of both phases takes place and their quantities
are defined by the lever rule:

pα = Cβ − C(x, t)

Cβ − Cα
, pβ = C(x, t) − Cα

Cβ − Cα
, (1)

where Cα and Cβ are limiting concentrations of the components in α- and β-phases,
respectively.

According to the Darken phenomenological theory of mutual diffusion, diffusion of the
components in a binary alloy is described by the equation [9]

∂C

∂ t
= div (D · grad C) , (2)

where CA,B is concentrations of A and B components and D is a mutual diffusion coefficient
that in the general case is a function of location and time only. Taking into account that in our
case of a lamellar system the component concentrations and the mutual diffusion coefficient
depend on the depth in a sample only, we get

∂C(x, t)

∂ t
= ∂

∂x

(
D(x, t) · ∂C(x, t)

∂x

)
, (3)

∂C(x, t)

∂ t
= ∂ D(x, t)

∂x
· ∂C(x, t)

∂x
+ D(x, t)

∂2C(x, t)

∂x2
. (4)

For single-phase regions (α- or β-phases) of a lamellar system, in accordance with
Darken’s law, the mutual diffusion coefficient in a binary alloy, provided that CA(x, t) +
CB(x, t) = 1, is equal to

D(CA(x, t)) = DACB(x, t) + DBCA(x, t) = DA(1 − CA(x, t)) + DBCA(x, t). (5)

Here DA,B are the partial diffusion coefficients for components A and B in each other that,
in accordance with the proposed model, do not depend on the sample’s phase-structural state
and, therefore, do not depend on coordinate x and time t .

For the two-phase region (mixture of α- and β-phases) of a lamellar system one
should take into account the presence of an interphase boundary where even in the case of
thermodynamic equilibrium there is a discontinuity in component concentration from some
limiting concentration in one phase (Cα) to a limiting concentration in the other one (Cβ).
Taking this into consideration we propose within the present physical model the mechanism of
mutual diffusion in a two-phase region of a binary lamellar system.

Let us assume that mutual diffusion in this case takes place only within continuous
channels formed by particles of one (α or β) phase (figure 2). Due to such diffusion the
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Figure 2. Schematic representation of mutual diffusion channels formed by particles of one phase
in the two-phase region of a lamellar system.

condition of thermodynamic equilibrium is violated at the phase boundary and there is a
redistribution of phase composition in accordance with the equilibrium state diagram.

Let particles of both phases and of the same linear size λ be generated in a two-phase
region of a lamellar system. Then, in the two-phase region in the j th layer with the coordinate
x j = xα + j ·λ (where xα is the coordinate of the boundary for the one-phase region containing
α-phase; see figure 2) particles of α-phase are formed with the probability pα

j defined by the
lever rule (see (1)):

pα
j = Cβ − C(x j )

Cβ − Cα
, (6)

where C(x j ) is local concentration of the components in the j th layer.
If we assume that in different layers phase formation is independent of the phase formation

in other layers, then the probability for formation of a channel from the one-phase region of
α-phase to the j th layer inclusive is as follows:

Pα
j =

j∏
i=1

pα
i · (1 − pα

j+1

)
. (7)

Now one can calculate the probability of formation of continuous α-phase channels
exceeding x j − xα in length through which mutual diffusion of the components from the one-
phase region up to the j th layer take place:

Wα
j =

m∑
i= j

Pα
j , (8)

where m is the number of layers in the two-phase region defined by the linear dimension of the
particles and the two-phase region width: m = xβ −xα

λ
(see figure 2).

So, the effective coefficient of mutual diffusion in the two-phase region at the depth x j , in
accordance with the proposed mechanism, is defined as

D(x j ) = Dα(x j) + Dβ(x j) = (
DA(1 − Cα

A) + DBCα
A

)
Wα

j +
(

DA(1 − Cβ

A) + DBCβ

A

)
W β

j .

(9)

Here Dα(x j) and Dβ(x j) are the coefficients of mutual diffusion of components along the
channels formed by particles of α- and β-phase, respectively.



Thermal stabilization of phase and structural state in binary lamellar metallic systems 4117

Therefore, in order to describe the diffusion and phase formation processes in a binary
lamellar system one needs to solve a second-order linear differential equation in partial
derivatives (4) taking into account (5) and (9) for the coefficient of mutual diffusion in different
phase regions. At that, initial and boundary conditions required to solve the equation are set in
accordance with specific experimental conditions.

Since we experimentally investigated lamellar systems obtained by magnetron sputtering
of a binary alloy of a certain composition over the surface of a binary alloy of another
composition [2–8], initial conditions were chosen in a form of a step that corresponds to the
thickness of the deposited coating:

C (t = 0, 0 � x < dcoat) = Ccoat,

C(t = 0, dcoat � x < d = dcoat + dsub) = Csub,

where Ccoat, dcoat and Csub, dsub are component concentrations and thicknesses of the coating
and the substrate, respectively.

In our case, the boundary conditions are defined by the absence of component flows at
boundaries of the lamellar system. Since the flow of the corresponding component at some
definite depth and at some definite time can be represented in the form (see (3))

J (x, t) = −D(x, t)
∂C(x, t)

∂x
,

then, the boundary conditions are

∂C(t, x)

∂x

∣∣∣∣
x=0

= 0 and
∂C(t, x)

∂x

∣∣∣∣
x=d

= 0.

The proposed physical model for the description of diffusion and phase formation
processes in binary lamellar metallic systems has been used in our code developed within the
MS Developer Studio software package with a Compaq Visual Fortran Professional Edition
6.5.0 compiler and a standard software package IVPAG/DIVPAG from the software library
DIGITAL to solve the system of differential equations in partial derivatives.

Below we briefly describe the main functional features of the code.
The code envisages the presence of three one-phase and two two-phase regions in the state

diagram of a binary alloy. At that, possible change in concentration boundaries for existing
phases with temperature is taken into account.

Using this code one can simulate an arbitrary temperature–time regime of thermal
treatment for the lamellar system under investigation including isothermal, isochronous, and
combined annealing as well as take into account the terminaltime taken to achieve the required
temperature and cooling down. At that it is supposed that the temperature dependence for
partial diffusion coefficients DA and DB is defined by an Arrhenius law:

DA,B(T ) = D0
A,B · exp

{
− QA,B

kT

}
, (10)

where D0
A,B and QA,B are frequency factors and activation energies for the corresponding

components, respectively, and k is the Boltzman constant.
With the code, at each temperature–time interval, it is possible to obtain not only local

concentration of the components C(x, t) upon solving equation (4), but to determine the
relative phase content at any depth of the lamellar system (including the location of phase
region boundaries), mutual diffusion coefficient and diffusion flow of the components.

In conclusion we list the main input parameters in the code that define the kinetics of
diffusion and phase formation.
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Upon the choice of the components for a lamellar binary system in accordance with
equilibrium state diagram of the alloy there are set concentration boundaries of the phases
(that depend in the general case on temperature) and partial diffusion coefficients DA,B of the
components or their frequency factors D0

A,B and activation energies QA,B. For a specific sample
of binary lamellar system produced by ion technologies, the concentration of the component
and thicknesses of the coating (Ccoat, dcoat) and the substrate (Csub, dsub) are set. Choice of
the temperature–time regime for thermal treatment defines the settings for the array of thermal
annealing temperatures at sequential time intervals. For realization of the proposed diffusion
mechanism in the two-phase region of a sample it is necessary to set a characteristic linear size
λ of phase particles formed in the two-phase region.

Each binary lamellar system has an equilibrium phase diagram peculiarity, various
diffusion coefficients and average component concentration. In order to reveal the laws of
thermally induced processes in lamellar systems we used numerical simulations; the results are
presented below.

3. Comparison of theoretical calculations with experimental data

In accordance with the phase diagram for the chosen Fe–Be alloy (see, for instance [11]),
within temperature intervals of interest there is a characteristic β-phase FeBe2+δ and so-called
higher beryllides FeBex including FeBe5. Solubility of Be in α-Fe becomes noticeable only at
∼250 ◦C and it increases considerably with temperature, achieving ∼29% at 1000 ◦C. In the
solid phase there is almost zero solubility of Fe in Be. In the theoretical calculations, we took
into account the temperature dependence of concentration boundaries for co-existing phases in
the Fe–Be binary alloy.

Setting of temperature values for thermal annealing at successive time intervals made
it possible to take into account the real temperature–time regime for thermal processing
of a specific lamellar Fe–Be system. We simulated successive isochronous and isothermal
temperature–time regimes for the thermal treatment of lamellar systems under investigation
and took into account the lengths of time to reach a given annealing temperature (∼1 h) and to
cool down (∼0.3 h).

The partial coefficients for diffusion of iron and beryllium and vice versa required for the
theoretical description of thermally induced processes were obtained on the basis of [12–14].
In accordance with these data, for both components in bulk samples, the Arrhenius law (10) is
true. We chose the following values of frequency factors and activation energies for the two
components: D0

Fe = 1 cm2 s−1, QFe = 220 kJ mol−1 [12, 13] and D0
Be = 0.1 cm2 s−1, QBe =

241.2 kJ mol−1 [14]. Since during magnetron sputtering of beryllium over α-Fe substrate there
usually appears a column coating structure [15], we considered the possibility of atom diffusion
through grain boundaries. The partial coefficients of Fe atom diffusion into Be were varied and
in some cases exceeded the values obtained on the basis of literature data by one or even two
orders of magnitude (see below).

For incorporation of the proposed diffusion mechanism in the two-phase region, a
characteristic linear size λ of the phase particles was taken to be, in the case of Fe–Be binary
alloy, 0.05 µm.

When comparing calculation results with Mössbauer spectroscopy data, it was supposed
that the Mössbauer effect probabilities for Mössbauer atoms in different phases (intermetallides
and solutions) of a binary alloy are close. In this case, the relative intensities of the partial
spectra obtained by registration of γ -quanta in transition geometry (MS-spectra) are equal to
the relative concentrations of Fe atoms belonging to different phases; the code includes their
calculations.
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Figure 3. Experimental and calculated relative intensities I of partial CEMS-spectra for the lamellar
Be(0.8 µm)–Fe(13 µm) system versus time of successive isothermal annealing tann.

In order to calculate the relative intensities of the partial spectra obtained by registration of
conversion electrons in back-scattering geometry (CEMS-spectra), one should take into account
the yield function F(x) of registered conversion electrons. In our case, the yield function
depends on the concentration profiles along the sample depth for both atoms A (CA(x)) and
atoms B (CB(x)) undergoing changes during thermal annealing. We accepted this function in
exponential form:

F(x) = exp

(
−

∫ x
0 CA(x) dx

hA

)
· exp

(
−

∫ x
0 CB(x) dx

hB

)
,

where hA and hB are the effective registration depths for conversion electrons in homogeneous
layers from A and B components, respectively. To calculate the relative intensities of the partial
spectra from the registration of conversion electrons in back-scattering geometry, we made
theoretical and experimental assessments of the effective registration depths for conversion
electrons [3]. So, for a description of the experimentally observed dependency of relative phase
intensities for lamellar Fe–Be systems, the values of hFe = 0.04 µm and hBe = 1 µm were
chosen.



4120 K K Kadyrzhanov et al

100
I,% FeBex FeBe2+δ

Be(1.8 µm)-Fe(13 µm)

α-Fe(Be)

80

60

40

20

0
500 600 700

Tann,°C

800 900 1000

100
I,% FeBex FeBe2+δ α-Fe(Be)

80

60

40

20

0
500 600 700

Tann,°C

800 900 1000

Figure 4. Experimental and calculated relative intensities I of partial CEMS-spectra for the lamellar
Be(1.8 µm)–Fe(13 µm) system versus time of successive isothermal annealing tann.

Let us note that MS-spectra include information about a lamellar system as a whole
while CEMS-spectra provide information regarding the surface layers. For the Fe–Be lamellar
system, the thickness of these surface layers is about 0.3 µm.

First, we present below the results of diffusion and phase transformation processes in
lamellar Fe–Be systems at isochronous annealing obtained by the method of Mössbauer
spectroscopy when the average beryllium concentration did not exceed the limit of its solubility
in iron. Figures 3 and 4 present the relative intensities I of CEMS-spectra of lamellar
Be(0.8 µm)–Fe(13 µm) and Be(1.8 µm)–Fe(13 µm) systems versus the terminal temperature
of successive isochronous annealing Tann. One can see that the experimental dependence is of
a complex nature that corresponds to successive mutual transformations of phases.

Some peculiarities of the observed phase formation processes are to be mentioned. The
investigated temperature interval Tann can be conditionally divided into three regions (see
figure 3): low temperatures (Tann � 600 ◦C) when beryllides are conceived; moderate
temperatures (600 ◦C < Tann < 750–850 ◦C) when the formed beryllides ‘compete’ with
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Figure 5. Relative intensities I of partial MS- and CEMS-spectra for the lamellar Be(0.6 µm)–
Fe(11 µm) system versus time of successive isothermal annealing tann. Circles denote experimental
data, and points, connected by solid lines, are calculation results.

each other; and high temperatures (Tann > 750–850 ◦C) when the formed beryllides undergo
decomposition and Be atoms come to the solution α-Fe (Be). The kinetics of phase formation
at temperatures Tann � 600 ◦C does not practically depend on the thickness of the deposited
coating. At 600 ◦C, the thickness of dissolved beryllium at the iron-facing side is about 0.5 µm.

For larger coating thickness (figure 4), the main characteristic processes of phase
transformations (‘competition’ and decomposition of beryllides) take place at higher annealing
temperatures, which is quite as expected due to the additional ‘replenishment’ of Be atoms
from the surface of the diffusion layer.

In these figures, calculated curves for the intensities of the partial spectra for different
phases versus temperature of isochronous annealing obtained using the physical model
described above are given. One can see that all the main peculiarities of the partial spectra
relative intensity change and, correspondingly, the proportions of different phases in surface
layers of the investigated systems are well described by the theory with increase of annealing
temperature. The best agreement is achieved with an increase (compared to bulk samples) of
the frequency factor for Fe atoms of 3 times in the case of the lamellar Be(0.8 µm)–Fe(13 µm)
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Figure 6. Relative intensities I of partial MS- and CEMS-spectra for the lamellar Be(1.0 µm)–
Fe(11 µm)–Be(1.2 µm) system versus time of successive isothermal annealing tann. Circles denote
experimental data, and points, connected by solid lines, are calculation results. For the CEMS data,
filled and open circles represent experimental data for the Be(1.0 µm) and Be(1.2 µm) sides of the
samples, respectively.

system and of 3.5 times in the Be(1.8 µm)–Fe(13 µm) system. At that, the frequency factor
for Be atoms and activation energies for both components were equal to the values for bulk
samples.

Let us now compare the theoretical calculations with experimental data [4, 5] obtained
from successive isothermal annealing of lamellar Fe–Be systems where the average beryllium
concentration does not exceed in the two-layer Be(0.6 µm)–Fe(11 µm) system and does exceed
in the three-layer Be(1.0 µm)–Fe(11 µm)–Be(1.2 µm) system its solubility limit in iron.

The experimental (denoted with circles) and calculated (points) dependences of the relative
intensities I of the partial CEMS-spectra of 57Fe on time of isothermal annealing at 710 ◦C for
the lamellar Be(0.6 µm)–Fe(11 µm) system are presented in figure 5. In the figure one can
see that the calculated curve obtained taking into account time for reaching the annealing
temperature and cooling down agrees well with the observed experimental data. For short
annealing times, there is mainly β-beryllide FeBe2+δ in a surface layer on the side previously
coated with Be (see the relative intensities of the partial CEMS-spectra in figure 5) and then,
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Figure 7. Beryllium concentration CBe and relative content of CFeBe2+δ
of phase FeBe2+δ (in amu

Fe) for the lamellar Be(0.6 µm)–Fe(11 µm) system as a function of distance x to the sample surface
for different times of successive isothermal annealing tann. The horizontal dashed lines denote
concentration regions of existing phases and the vertical dashed lines denote coating thickness.

with increased annealing time, the relative intensity of the partial spectrum from FeBe2+δ

becomes lower. In other words, there is decomposition of β-beryllide in the surface layer
accompanied with increase of beryllium concentration in the solution α-Fe (Be) [4, 5]. For
better agreement of calculation results and experimental data, the frequency factor for Fe
atom was increased to 17 times that used for the bulk sample. Some lower values obtained
in experimental data on relative intensities of MS-spectra for α-Fe (Be)-phase in comparison
with calculated ones (see figure 5) can be explained by ‘saturation’ (see, for instance [16]).

Figure 6 presents the experimental (circles) dependence for relative intensities I of CEMS-
spectra for the three-layer lamellar Be(1.0 µm)–Fe(11 µm)–Be(1.2 µm) system versus time of
successive isothermal annealing tann at 720 ◦C. One can see that, for short annealing times, in
the surface layer there appears mainly beryllide FeBe2+δ from the Be-coated side. Increase in
annealing time results in some decrease in intensity of the partial spectrum FeBe2+δ, i.e. there
is decomposition of β-beryllide in this subsurface layer as in case of the two-layer system.
Nevertheless, at tann � 5 h there is thermal stability of the β-beryllide and the solution α-
Fe(Be) in the investigated three-layer system. That means that all phase formation processes
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Figure 8. Beryllium concentration CBe and relative content of CFeBe2+δ
of phase FeBe2+δ (in amu

Fe) in the lamellar Be(1.0 µm)–Fe(11 µm)–Be(1.2 µm) system as a function of distance x to the
sample surface for different times of successive isothermal annealing tann. The horizontal dashed
lines denote concentration regions of existing phases and the vertical dashed lines denote coating
thickness.

within the entire sample bulk have stopped [4, 5]. At that the phase FeBe2+δ contributes to
∼78 at.% Fe in the surface layer and ∼8 at.% Fe within the whole sample volume [5].

Points on the same figure present the calculated intensities of partial CEMS-spectra for
various phases of a three-layer lamellar system versus time of successive isothermal annealing
tann obtained using the proposed physical model. One can see (figure 6) that the calculated
points obtained, as in the case of the two-layer system, taking into account the time to reach
the annealing temperature and time for cooling down, describe the experimental data well,
including the observed process of thermal stabilization. For better agreement of calculated
results and experimental data, the frequency factor for the Fe atom was increased in this case
to 75 times that for the bulk sample. Such an increase of the frequency factor seems to be
related to the considerable difference in the structures of the Be-coating layer (grains, column
structure, etc) and bulk Be [15]; at that, higher diffusion rates for Fe atoms in the sputtered
Be-layer is possible.

It follows from the comparison of calculated and experimental data that the proposed
physical model adequately describes the diffusion and phase transformation processes in
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Figure 9. Location of boundary between two-phase region α-Fe(Be) + FeBe2+δ and solution α-
Fe(Be) in the lamellar Be(0.6 µm)–Fe(11 µm) system and in the lamellar Be(1.0 µm)–Fe(11 µm)–
Be(1.2 µm) system depending on time of successive isothermal annealing tann (calculation results).

the investigated systems, strongly suggesting the validity of intermediate calculations of
concentration profiles for components and phases, boundaries of phase regions, local
coefficients of mutual diffusion, etc.

The code makes it possible to obtain not only the local concentration of components
C(x, t) as a solution of the differential equation (1), but to determine the relative phase content
at any depth of a lamellar system (for instance, the location of phase region boundaries) as
well as the mutual diffusion coefficient, flow and chemical potentials of components for each
temperature–time interval.

For comparison, figures 7 and 8 present the calculated concentration profiles for Be atoms
and formed phase of β-beryllide FeBe2+δ at different stages of successive isothermal annealing
for two-layer and three-layer systems. It is seen that in the first case complete dissolution of Be
atoms in α-Fe takes place and in the second, a spatially heterogeneous distribution of the phase-
structural state is formed. The thickness of the surface layer that includes mainly β-beryllide
FeBe2+δ (>80 at.% Fe) is ∼0.1 µm. It should be noted that in the last case the entire sample
becomes a two-phase structure due to thermal stabilization.
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Figure 9 presents for comparison the calculation results for boundary positions between
the two-phase regions α-Fe(Be) + FeBe2+δ and the solution α-Fe(Be) in the two-layer
Be(0.6 µm)–Fe(11 µm) and the three-layer Be(1.0 µm)–Fe(11 µm)–Be(1.2 µm) systems at
various stages of consecutive isothermal annealing. One can see that in the first case a complete
dissolution of Be atoms in α-Fe is observed; in the second case, a spatially heterogeneous
distribution of the phase-structural state in the sample depth is formed. It should be noted that
in the second case the whole sample becomes a two-phase one due to thermal stabilization.

4. Conclusions

A physical model has been proposed for thermally induced processes in binary lamellar
systems that describes diffusion, phase formation and thermal stabilization of the spatially
heterogeneous phase-structural state of the systems. The model is based on Darken’s theory of
mutual diffusion with the assumption that the phase-formation rate greatly exceeds the diffusion
one; it is also based on the proposed mutual diffusion mechanism for two-phase concentration
regions.

A computer code has been made that describes quantitatively the kinetics of such processes
in any region of lamellar systems for any given annealing regime. For comparison with
experimental data, the relative intensities of Mössbauer spectra obtained both at γ -quantum
registration in transition geometry and at registration of conversion electrons in back-scattering
geometry have been calculated.

Good agreement of theoretical calculations with Mössbauer investigations of lamellar Fe–
Be systems subjected to subsequent thermal annealing has been achieved.
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